Genome Integrity

ORIGINAL ARTICLE
Year
: 2016  |  Volume : 7  |  Issue : 1  |  Page : 3-

Towards establishing capacity for biological dosimetry at ghana atomic energy commission


Daniel Gyingiri Achel1, Elom Achoribo1, Sandra Agbenyegah1, Rudolph M Adaboro1, Shadrack Donkor1, Nana A K Adu-Bobi1, Akwasi A Agyekum1, Felicia Akuamoa1, Samuel N Tagoe2, Kofi A Kyei2, Joel Yarney2, Antonio Serafin3, John M Akudugu3 
1 Applied Radiation Biology Centre, Radiological and Medical Sciences Research Institute, Ghana Atomic Energy Commission, Legon, Ghana
2 National Centre for Radiotherapy and Nuclear Medicine, Korle-Bu Teaching Hospital, Accra, Ghana
3 Department of Medical Imaging and Clinical Oncology, Division of Radiobiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, Cape Town, South Africa

Correspondence Address:
Daniel Gyingiri Achel
Applied Radiation Biology Centre, Radiological and Medical Sciences Research Institute, P. O. Box: LG 80, Legon Accra
Ghana

The aim of this study was not only to obtain basic technical prerequisites for the establishment of capacity of biological dosimetry at the Ghana Atomic Energy Commission (GAEC) but also to stimulate interest in biological dosimetry research in Ghana and Sub-Saharan Africa. Peripheral blood from four healthy donors was exposed to different doses (0–6 Gy) of gamma rays from a radiotherapy machine and lymphocytes were subsequently stimulated, cultured, and processed according to standard protocols for 48–50 h. Processed cells were analyzed for the frequencies of dicentric and centric ring chromosomes. Radiation dose delivered to the experimental model was verified using GafChromic® EBT films in parallel experiments. Basic technical prerequisites for the establishment of capacity of biological dosimetry in the GAEC have been realized and expertise in the dicentric chromosome assay consolidated. We successfully obtained preliminary cytogenetic data for a dose-response relationship of the irradiated blood lymphocytes. The data strongly indicate the existence of significant linear (α) and quadratic (β) components and are consistent with those published for the production of chromosome aberrations in comparable absorbed dose ranges.


How to cite this article:
Achel DG, Achoribo E, Agbenyegah S, Adaboro RM, Donkor S, Adu-Bobi NA, Agyekum AA, Akuamoa F, Tagoe SN, Kyei KA, Yarney J, Serafin A, Akudugu JM. Towards establishing capacity for biological dosimetry at ghana atomic energy commission.Genome Integr 2016;7:3-3


How to cite this URL:
Achel DG, Achoribo E, Agbenyegah S, Adaboro RM, Donkor S, Adu-Bobi NA, Agyekum AA, Akuamoa F, Tagoe SN, Kyei KA, Yarney J, Serafin A, Akudugu JM. Towards establishing capacity for biological dosimetry at ghana atomic energy commission. Genome Integr [serial online] 2016 [cited 2020 Jan 27 ];7:3-3
Available from: http://www.genome-integrity.org/article.asp?issn=2041-9414;year=2016;volume=7;issue=1;spage=3;epage=3;aulast=Achel;type=0