C Akash, Madhav Prabhu, Arif Maldar, Poornima Akash, Sanjay Mishra, TK Madhura, Santosh Kumar, Rekha S Patil, Shobhit Piplani, KS Smitha Genome Integr 2021, 12:1 (18 November 2021) DOI:10.4103/genint.genint_3_21
Evidence show that shortened telomere length (TL) and low Vitamin D levels can increase the risk of type 2 diabetes mellitus (T2DM) and its associated complications. T2DM has been considered as an age-related disease, it may be associated with TL. The study aimed to evaluate the association of TL and Vitamin D levels with complications of T2DM and the impact of Vitamin D on TL in patients with T2DM. This 1-year cross-sectional study was conducted at a tertiary care hospital on 90 patients. Height, weight, body mass index, waist-hip ratio was calculated. Fasting blood sugars, postprandial blood sugar, and glycated hemoglobin (HbA1c) were analyzed. Absolute TL was obtained from quantitative real-time polymerase chain reaction (qPCR). Vitamin D estimation was done by chemiluminescent immunoassay. Descriptive analysis of the data was done using R i386 3.6.3. The study found a positive correlation between TL and Vitamin D levels (r = 0.64; P < 0.0001). The interaction with high HbA1c levels and lower levels of Vitamin D led to the shortening of TL (P = 0.0001). The median of TL and mean of Vitamin D levels were significantly less in the diabetic group (P < 0.0001). Vitamin D levels positively affected the TL and its levels had an inverse relation with the HbA1c levels. This association had a significant effect on the shortening of TL. Vitamin D also had a significant association with other diabetic complications that instigated the shortening of TL. Therefore, assessing the role of Vitamin D levels on the shortening of TL can prove to be crucial biomarkers in managing optimal glycemic levels in T2DM patients.
|
Shobhit Piplani, Madhav Prabhu, Nadezdha Niyarah Alemao, C Akash, Pradhum Ram, Sameer Ambar, Vijay Kumbar, Yashasvi Chugh, Siba P Raychauduri, Sanjay Kumar Chugh Genome Integr 2021, 12:1 (31 May 2021) DOI:10.4103/genint.genint_1_21
Telomere length is regarded as a potential biomarker of biological ageing and is associated with various age-related diseases, such as ischemic heart disease (IHD), myocardial infarction, peripheral vascular disease, and cancer. As there is a paucity of study that deals with this influence, this study aimed to assess how the cardiovascular risk factors influence the risk of IHD by performing mediation analysis. A total of 407 males were included in the study. IHD was diagnosed through echocardiography and coronary angiography by determining the number of coronary vessels involved. Demographic data, clinical history, and laboratory investigations such as random blood sugar (RBS), fasting lipid profile, serum creatinine, and serum urea levels of all the subjects were measured and recorded. Serum uric acid and blood urea nitrogen (BUN) levels were significantly higher in IHD subjects compared to non-IHD subjects (P < 0.05). Body mass index (BMI), glycosylated hemoglobin (HbA1c), RBS, serum uric acid, serum creatinine, BUN, total cholesterol, triglycerides, and telomere length significantly differed between subjects with and without IHD (P < 0.05). Further, telomere length (P < 0.001), BMI (P < 0.001), and total cholesterol level (P < 0.001) were risk factors that significantly affected the incidence of IHD, as proved by logistic regression. It indicates that shorter telomeres contribute to increased risk of IHD, influenced by BMI, HbA1c, BUN, total cholesterol levels, and RBS (P < 0.001). The study established a link between telomere shortening, conventional risk factors, and IHD; moreover, the study takes care in the role of mediation analysis which is a novel idea as little is done in this area of biostatistics with telomere length. Overall, this further establishes that telomeres length might serve as the promising biomarkers in predicting the risk of IHD.
|