Close
  Indian J Med Microbiol
 

Figure 2: Chromosome and DNA breaks induced by radiation in human lymphocytes. (a) Chromosome ends with undetectable telomeres: Partial metaphase spread showing chromosomes and fragments with undetectable telomeres. Arrows point to the chromosome ends without any telomere signal. (b) Analysis of fragments and chromosome ends without telomere signals showed a dose-dependent response as well as heterogeneity among the different samples studied. (c and d) Induction and kinetics of γH2AX foci following exposure to gamma radiation as a measure of DNA double-strand breaks in human lymphocytes. (c) Immunofluorescence staining of nuclei with anti-γH2AX antibodies (Green) and DAPI as a counterstain (Blue). (d) At 2 h postirradiation, the γH2AX foci were induced in a dose-dependent manner and the frequency of γH2AX foci reduced to basal levels by 24 h postirradiation

Figure 2: Chromosome and DNA breaks induced by radiation in human lymphocytes. (a) Chromosome ends with undetectable telomeres: Partial metaphase spread showing chromosomes and fragments with undetectable telomeres. Arrows point to the chromosome ends without any telomere signal. (b) Analysis of fragments and chromosome ends without telomere signals showed a dose-dependent response as well as heterogeneity among the different samples studied. (c and d) Induction and kinetics of γH2AX foci following exposure to gamma radiation as a measure of DNA double-strand breaks in human lymphocytes. (c) Immunofluorescence staining of nuclei with anti-γH2AX antibodies (Green) and DAPI as a counterstain (Blue). (d) At 2 h postirradiation, the γH2AX foci were induced in a dose-dependent manner and the frequency of γH2AX foci reduced to basal levels by 24 h postirradiation